Flood Prediction Modeling Using Hybrid BPN-EKF And Hybrid ENN-EKF: A Comparative Study

نویسندگان

  • Fazlina Ahmat Ruslan
  • Ramli Adnan
  • Abd Manan Samad
  • Zainazlan Md Zain
چکیده

Recently, artificial neural networks have been successfully applied to various hydrologic problems. This paper proposed flood water level modeling using the Hybrid of Back Propagation Neural Network with Extended Kalman Filter and the Hybrid of Elman Neural Network with Extended Kalman Filter that using the water level data from Sungai Kelang which is located at Jambatan Petaling, Kuala Lumpur. The models were developed by processing offline data over time using neural network architecture. The methodologies and techniques of the two models were presented in this paper and comparison of the long term runoff time prediction results between them were also conducted. The prediction results using both hybrid models showed satisfactory and reliable performances for flood water level prediction. Keywords—Back Propagation Neural Network (BPN); Extended Kalman Filter (EKF); Elman Neural Network (ENN);

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warrants Price Forecasting using Kernel Machine and EKF-ANN: a Comparative Study

Due to the six unreasonable assumptions companioned with the Black-Scholes options pricing model (BSM), which often make the miss-pricing result because of the difference of market convention in practical. This study try to combine the BSM and extended Kalman filters-based artificial neural networks (EKF-ANN) to deal with the limitation of consideration of the influences from many unexpected re...

متن کامل

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

Adaptive Classification by Hybrid EKF with Truncated Filtering: Brain Computer Interfacing

This paper proposes a robust algorithm for adaptive modelling of EEG signal classification using a modified Extended Kalman Filter (EKF). This modified EKF combines Radial Basis functions (RBF) and Autoregressive (AR) modeling and obtains better classification performance by truncating the filtering distribution when new observations are very informative.

متن کامل

Optimization-Based Estimator Design for Vision-Aided Inertial Navigation

This paper focuses on the problem of real-time pose tracking using visual and inertial sensors in systems with limited processing power. Our main contribution is a novel approach to the design of estimators for these systems, which optimally utilizes the available resources. Specifically, we design a hybrid estimator that integrates two algorithms with complementary computational characteristic...

متن کامل

Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming

In this paper, a hybrid model which combines Extended Kalman Filter (EKF) and Genetic Programming (GP) for forecasting of water demand in Tehran is developed. The initial goal of the current work is forecasting monthly water demand using GP for achieving an explicit optimum formula. In the proposed model, the EKF is applied to infer latent variables in order to make a forecasting based on GP re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013